b. Prove that

$$1 + \frac{1}{4}M^2 + \frac{1}{40}M^4 + \dots$$

- 29. a. A conical diffuser has entry and exit diameters of 15cm and 30cm respectively. The pressure, temperature and velocity of air at entry are 0.69 bar, 340K and 180 m/s respectively. Determine.
 - (i) Exit pressure
 - Exit velocity (ii)
 - The force excreted on the diffuser wall (τ) . (iii)

(**OR**)

- b. A convergent divergent air nozzle has exit to throat area ratio of 3. A normal shock appears at the divergent section where the existing area ratio is 2.2. Find the mach number, before and after the shock, if the inlet properties are 500 KPa and 450 K. Find the properties of air at exit and entropy increase across the shock.
- 30. a. Air at 120 KN/m² and 40°C flows through a 200 mm diameter pipe adiabatically. If the upstream mach number is 2.5, determine the maximum length of pipe and the properties of air at exit. Also estimate the length of the pipe if the exit mach number is 1.8. Take f=0.01.

(OR)

- b. A gas at a pressure of 0.69 bar and temperature 278K enters a combustion chamber at velocity of 60 m/s. the heat supplied in the combustion chamber is 1450 KJ/kg/ Determine the mach number, pressure, temperature and velocity of the gas at the exit.
- 31. a. Explain about ramjet engine and pulse jet engine with neat sketch.

(**OR**)

- b. A turbojet propels an air craft at a speed of 900 km/h while taking 3000 kg of air per minute. The isentropic enthalpy drop in the nozzle is 200 kJ/kg and then nozzle efficiency is 90%. The air fuel raio is 85 and the combustion efficiency is 95%. The calorific value of the fuel is 42,000 KJ/kg. calculate
 - Propulsive power or thrust power (i)
 - (ii) Thermal efficiency
 - (iii) Propulsive efficiency

32. a. Explain about liquid propellant rocket engines and solid propellant rocket motors.

(**OR**)

b. Calculate the thrust, specific impulse, propulsive efficiency, thermal and overall efficiencies of a rocket engine from the following data Effective jet velocity = 1250 m/sFlight to jet speed ratio = 0.8Oxidizer flow rate = 3.5 kg/sFuel flow rate = 1 kg/sHeat of reaction of exhaust gases = 2500 KJ/kg.

* * * * *

Reg. No.

ME1023 - GAS DYNAMICS AND SPACE PROPULSION (For the candidates admitted during the academic year 2013 - 2014 and 2014 - 2015)

- Note: (i) over to hall invigilator at the end of 45th minute. Part - B and Part - C should be answered in answer booklet. (ii)

Time: Three Hours

Answer ALL Questions

- argon = 39.94)
 - (A) 157 KJ/kg
 - (C) 157 J/kg
- 2. An air stream at P=1.0 bar, T=400K and C=400 m/s is brought to rest isentropically. Determine the stagnation temperature. (A) 449.5 K
 - (C) 469.5 K
- 3. Air at P₁=3 bar and T₁=500K flows in a constant area duet. Calculate density (γ =1.4, R=289 J/kg K) (A) $2.076 \times 10^{-5} kg / m^3$
- (C) 3.076 kg/m^3
- 4. Calculate C_{max} for the adiabatic flow if Cp=1006 J/kg K and To=311.15K. (A) 591 m/s (C) 791 m/s
- ^{5.} If $\frac{F_1}{F_1^*} = 1.203$ and $\frac{F_2}{F_2^*} = 4.30(F^* = 1370N)$; Calculate the force excerted on the diffuser wall. (A) 4243 N (C) 4243 KN
- 6. The choked flow condition in which the pressure ratio ($\gamma = 1.4$) is (A) 0.328 (C) 0.528
- 7. If $(\gamma = 1.3, R = 0.469 \text{ KJ/kg K}) Mx = 2.5, Px = 2$ bar; then calculate My? (A) 0.493 (C) 0.693

22NA6ME1023

Page 1 of 4

B.Tech. DEGREE EXAMINATION, NOVEMBER 2016 Sixth Semester

Part - A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

1. Argon is stored in a reservoir at 300K, determine the stagnation enthalpy ($\gamma = 1.4$, M.W of

(B) 157 KJ/kg K (D) 157 J/kg K

(B) 459.5 K (D) 479.5 K

(B) 2.076 kg / m^3 (D) $3.076 \times 10^{-5} kg / m^3$

(B) 691 m/s (D) 891 m/s

(B) -4243 N (D) -4243 KN

(B) 0.428 (D) 0.628

(B) 0.593 (D) 0.793

8.	The following area ratio are $\frac{A_2}{A^*} = 3; \frac{A_x}{A_t^*}$ and	d $\frac{A_x}{A_y^*}$ = 1.287 then. Calcu	endate $\frac{A_2}{A_y^*} =$	19.	The boili (A) 40k (C) 20k	ng point of liquid hyd	rogen
	(A) 8.49 (C) 0.94	(B) 5.128(D) 1.755		20.	If thrust (A) 140	= 7KN,weight flow ra	te=50 N/s,
9.	If $\gamma = 1.4$, $\frac{4fL_{\text{max}}}{D} = 0.522$, then determine t	he entry mach number (N	M1)		(C) 142	sec	
	(A) 2.98 (C) 3.20	(B) 3.00(D) 3.40				PA An	RT – B (5 swer ANY
10.	If D=30 cm, friction factor is 0.003, the rat	io $\frac{4\overline{f}L}{D} = 0.2d$, then the	length of duet is	21.	A plane	is flying at a speed of and 0.7 har respective	f 300 m/s velv Dete
	(A) 5.025m(C) 7.025m	(B) 6.025m (D) 8.025m			the nose	of the aircraft.	
11	The booting and the sheet of a sub-	in marian in which mach		22.	An aircr	aft is flying at an altit	ude of 11,
11.	(A) Increases	(B) Decreases	number		inlet dill	user. The temperature	t are 0.4 a
	(C) Constant	(D) Increases and then	decreases		the diffu	ser.	L al 0 0.4 a
12.	The cooling process takes place in a supers	onic region in which vel	ocity	23.	A bicycl	e tire is filled with ai	r at 165K
	(A) Increases	(B) Decreases			atmosph	ere of 100KPa and 25	°C. The v
	(C) Constant	(D) increases and then	l decreases		the syste mass flo	m. Assuming one dim w rate.	ensional i
13.	The air standard efficiency of the engine for	or the pressure ratio of 5.	779 is				
	(A) 0.6942	(B) 0.5942 (D) 0.2042		24.	A jet of	air at 270K and 0.7	bar has ar
	(C) 0.4942	(D) 0.3942			normal s (i)	hock wave, determine Mach number	the follow
14.	Determine the area of cross section of the j (A) $= 2.0 \text{ m}^2$	propeller disc if diameter $(D) = 4.0 \text{ cm}^2$	= 2.5m		(ii)	Temperature	
	(A) 3.9 m^2	(B) 4.9 cm^2			(iii)	Pressure	
	(C) 4.9 m ²	(D) 3.9 cm			(iv)	Speed of sound	
15.	If (propulsive efficiency) η_p =66.6%, (the efficiency	pretical efficiency) $\eta_{\text{th}=12}$.65% then calculate overall	25.	What are	e the assumptions mad	le for Fanr
	(A) 8.42%	(B) 9.42%		26.	Why tai!	pipe is used in aircrat	ft engine?
	(C) 10.42%	(D) 11.42%	· ·				1 1
16	If thrust produced is 20 KN and flight spee	d is 1000 kmph then cal	ulate thrust nower	27.	Write th	e difference between	n liquid p
10.	(A) 5555 N	(B) 5555 KN	culate unust power		propertie	ës.	
	(C) 5555 W	(D) 5555 KW				PA	RT – C (5
17.	The oxidizer used in gasoline fuel						Allswei
	(A) LO _x	(B) H_2O_2		28. a.	An air ie	et (ν =1.4, R=287 J/kg	K) at 400]
	(C) N_2O_3	(D) N ₂ O ₄			(i) (ii)	Velocity of sound at Velocity of sound at	400K the stagn
18.	The molecular weight of hydrazine				(iii)	Maximum velocity	of the jet
	(A) 22	(B) 32			(iv)	Stagnation enthalpy	-
	(C) 36	(D) 40			(v)	Crocco number	

Page 3 of 4

(B) -40K (D) -20K

N/s, then calculate specific impulse

(B) 140 min (D) 142 min

$B (5 \times 4 = 20 \text{ Marks})$

NY FIVE Questions

m/s at an altitude where temperature and pressure of air Determine the pressure read by a pilot tube mounted on

11,500 KM. The air is compressed isentropically in an e inlet of the diffuser is 200K. If the mach number and .4 and 235K, Calculate the mach number at the entry of

55KPa and 30°C, the valve breaks and air exhausts into he valve exit is 2mm diameter and is the smallest area in al isentropic flow. Find the mach number at the exit and

as an initial mach number of 1.9. If it passes through a ollowing for downstream of the shock.

Fanno flow and Rayleigh flow?

id propellants and solid propellants in terms of their

$C (5 \times 12 = 60 \text{ Marks})$ er ALL Questions

400K has sonic velocity. Determine,

agnation conditions

(OR)